Persamaanlingkaran , memiliki pusat dan jari-jari . Jika dan ditarik sebuah garis dan membentuk diameter sebuah lingkaran, maka berlaku: Sehingga: Pusat lingkaran . Maka: Dari kesamaan di atas, didapat: Sehingga titik ujung lainnya adalah . Oleh karena itu, jawaban yang tepat adalah B. TopologiJaringan adalah studi mengenai pengaturan elemen-elemen dari suatu jaringan, khususnya hubungan fisik dan lojik antar simpul simpul. Local Area Network (LAN) adalah salah satu contoh dari sebuah jaringan yang menunjukkan topologi fisik dan lojik sekaligus. Suatu simpul dalam LAN akan mempunyai satu atau lebih hubungan dengan satu atau lebih simpul di dalam jaringan dan pengaturan Sekalisalah satu fragmen batu keras ini jatuh ke dalam salah satu rongga ia diputar oleh arus air dan mulai mengukir dinding rongga dan meningkatkan dimensi lubang. Once one of these harder rock fragments falls into one of the cavities it is rotated by the water current and begins to carve at the cavity wall and increases the dimensions of the Diameterlingkaran adalah jarak dari titik (7, 6) ke titik (1, −2), yaitu : d = \(\sqrt{(7-1)^{2}+(6-(-2))^{2}}\) = 10 r = \(\frac{1}{2}\)d = 5 r = 5 Pusat lingkaran adalah titik tengah diameter, yaitu : (a, b) = \(\left ( \frac{7+1}{2},\,\frac{6+(-2)}{2} \right )\) = (4, 2) (a, b) = (4, 2) Salahsatu mata pelajaran atau mapel yang diujikan pada Ujian Nasional dan Ujian Sekolah adalah Matematika. Jika diketahui tinggi trapesium 20 cm dan panjang diameter lingkaran 14 cm, luas daerah yang di arsir adalah. A. 356 cm2 B. 312 cm2 C. 246 cm2 D. 184 cm2 Jika jarak ujung bawah tangga ke tembok 160 cm dan jarak ujung atas Papuaadalah sebuah propinsi terluas di Indonesia yang terletak di bagian timur Indonesia.Propinsi yang dulu bernama Irian Barat ini berbatasan langsung dengan Papua New Guinea,yang dulunya masuk sebagai bagian dari NKRI.Kekayaan alam yang berlimpah,ditambah dengan banyaknya ragam suku dan budaya, menjadikan propinsi ini sebagai salah satu tempat tujuan wisata di Indonesia dan sebagai salah . Diketahui salah satu ujung diameternya di titik dan titik sehingga panjang diameter lingkaran dari persamaan tersebut adalah Karena diameter merupakan ukuran panjang maka bernilai positif sehingga yang tepat adalah maka jari-jari lingkarannya Titik pusat lingkaran dari persamaan tersebut merupakan titik tengah pada diameter lingkaran itu, maka maka persamaan lingkaran tersebut dapat ditentukan sebagai berikut Oleh karena itu, tidak ada jawaban yang tepat. ahreumlim Verified answer Materi Lingkaransalah satu pasangan diameternya adalah titik A-4,-3 dan B6,1. pusat lingkaran adalah titik tengah dari garis = -4+6/2 , -3+1/2 = 1 , -1 = p,qdiameter lingkaran adalah panjang garis ABd = √-4-6² + -3-1²d = √100 + 16d = √116r² = 116/4r² = 29jadi pers. lingkarannya adalahx - p² + y - q² = r²x - 1² + y + 1² = r²x² - 2x + 1 + y² + 2y + 1 = 29x² + y² - 2x + 2y + 1 - 29 = 0x² + y² - 2x + 2y - 27 = 0 2 votes Thanks 4 1. Persamaan lingkaran berpusat di titik 2, 3 dan melalui titik 5, -1 adalah... PembahasanPersamaan lingkaran yang berpusat di 2, 3 dan melalui titik 5, -1adalah r = √25 r = 5sehingga persamaan lingkarannyajawaban A 2. Persamaan garis singgung lingkaran di titik 7, 1 adalah...a. 3x – 4y – 41 = 0b. 4x + 3y – 55 = 0c. 4x – 5y – 53 = 0d. 4x + 3y – 31 = 0e. 4x – 3y – 40 = 0PembahasanPersamaan garis singgung lingkaran melalui titik x1, y1 dicari dengan rumus + + ax1 + x + b y1 + y + c = + – ½ . 6 x1 + x + ½ . 4 y1 + y - 12 = + – 3 7 + x + 2 1 + y - 12 = 07x + y – 21 – 3x + 2 + 2y – 12 = 04x + 3y – 31 = 0Jawaban D 3. Lingkaran memotong garis y = 1. Persamaan garis singgung di titik potong lingkaran dan garis y = 1 adalah ...a. x = 2 dan x = 4b. x = 3 dan x = 1c. x = 1 dan x = 5d. x = 2 dan x = 3e. x = 3 dan x = 4pembahasanLingkaran memotong garis y = 1 di titik x = 2 dan x = 4jadi, titik potongnya 2, 1 dan 4, 1persamaan lingkarannya menjadi persamaan garis singgung terhadap lingkaran L melalui titik 2, 1 adalah + + ax1 + x + b y1 + y + c = + – ½ . 6 x1 + x - ½ . 2 y1 + y + 9 = + – 3 2 + x - 1 1 + y + 9 = 02x + y – 6 – 3x – 1 – y + 9 = 0-x + 2 = 0x = 2persamaan garis singgung terhadap lingkaran L melalui titik 4, 1 adalah + + ax1 + x + b y1 + y + c = + – ½ . 6 x1 + x - ½ . 2 y1 + y + 9 = + – 3 4 + x - 1 1 + y + 9 = 04x + y – 12 – 3x – 1 – y + 9 = 0x - 4 = 0x = 4jawaban A 4. persamaan lingkaran dengan pusat 3 , -2 dan menyinggung sumbu Y adalah ...PembahasanRumus persamaan lingkaran dengan pusat a, b adalah Karena, garis menyinggung sumbu y, maka jari-jari = x = 3 karena pusatnya 3, -2, sehinggajawaban D 5. Jarak antara titik pusat lingkaran dari sumbu y adalah ...a. 3b. 2,5c. 2d. 1,5e. 1PembahasanLingkaran dengan persamaan memiliki titik pusat -a, -b, maka - ½ .-4 , - ½ . 0 = 2, 0Karena, titik pusatnya 2, 0 maka jarak lingkaran ke sumbu y = x = 2Jawaban C 6. Lingkaran menyinggung garis x = 4 di titik ...a. 4, 6b. 4, -6c. 4, 4d. 4, 1e. 4, -1Pembahasan Lingkaran menyinggung garis x = 4 maka y + 1 y + 1 = 0 y = -1jadi, lingkaran menyinggung di titik 4, -1jawaban E 7. Lingkaran yang sepusat dengan lingkaran dan menyinggung garis 3x – 4y + 7 = 0 mempunyai persamaan ... PembahasanLingkaran dengan persamaan memiliki titik pusat -a, -b, maka - ½ . -4, - ½ . 6 = 2, -3Sehingga persamaan garis yang berpusat di 2, -3 adalahPanjang jari-jari r lingkaran adalah jarak titik pusat 2, -3 ke garis 3x – 4y + 7 = 0, makajadi, persamaan lingkarannya menjadiJawaban A 8. Diketahui lingkaran mempunyai jari-jari 5 dan menyinggung sumbu x. Pusat lingkaran tersebut adalah ...a. -5, -3b. -5, 3c. 6, -5d. -6, -5e. 3, -5PembahasanRumus jari-jari adalah maka p = ± 3sehingga persamaannya menjadi Titik pusatnya = - ½ .6 , - ½ .10 = -3, -5Titik pusatnya = - ½ .-6 , - ½ .10 = 3, -5Jawaban E 9. Persamaan garis singgung melalui titik 5, 1 pada lingkaran adalah ...a. 3x + 4y – 19 = 0b. 3x - 4y – 19 = 0c. 4x - 3y + 19 = 0d. x + 7y – 26 = 0e. x - 7y – 26 = 0pembahasanpersamaan garis singgung terhadap lingkaran melalui titik 5, 1 adalah + + ax1 + x + b y1 + y + c = + + ½ .-4 5 + x + ½ .6 1 + y - 12 = 05x + y + -2 5 + x + 3 1 + y - 12 = 05x + y – 10 – 2x + 3 + 3y – 12 = 03x + 4y - 19 = 0Jawaban A 10. lingkaran dengan persamaan melalui titik 5, -1. Jari-jarinya adalah...a. √7 b. 3c. 4d. 2√6e. 9PembahasanLingkaran melalui 5, -1 maka 25 + 1 – 20 – 2 + c = 0 4 + c = 0 c = -4sehingga jari-jari lingkarannya r = 3jawaban B 11. Lingkaran mempunyai jari-jari 3 dan menyinggung sumbu x. Pusat lingkaran tersebut sama dengan ...a. -2, 3b. 2, -3c. 2, 3d. 3, -2e. -3, 2Pembahasan p = ± 2sehingga persamaannya menjadi Pusatnya - ½ .4, - ½ .6 = -2, -3Pusatnya - ½ . -4, - ½ . 6 = 2, -3Jawaban B 12. Persamaan garis singgung pada lingkaran yang tegak lurus garis 5x – 12y + 15 = 0 adalah ...a. 12x + 5y – 41 = 0 dan 12x + 5y + 37 = 0b. 12x + 5y + 41 = 0 dan 12x + 5y + 37 = 0c. 5x + 12y + 41 = 0 dan 5x + 12y + 37 = 0d. 5x + 12y - 41 = 0 dan 5x + 12y - 37 = 0e. 12x - 5y – 41 = 0 dan 12x - 5y - 37 = 0PembahasanPusat lingkaran - ½ .-2, - ½ .4 = 1, -2 r = 3garis 5x – 12y + 15 = 0 memiliki gradien m = -a/b = -5/-12 = 5/12 karena garis yang ditanyakan adalah garis yang tegak lurus, maka gradiennya menjadi -12/5persamaan garis singgung lingkaran dengan pusat a, b ; berjari-jari r; dan bergradien m adalah Karena pusat lingkarannya 1, -2; r = 3, dan m = -12/5 , maka y + 2 = -12/5 x – 1 ± 3 .13/5 kalikan 5 5 y + 2 = 5 .-12/5 x – 1 ± .13/5 5y + 10 = -12 x – 1 ± 15 . 13/5 5y + 10 = -12x + 12 ± 39 12x + 5y – 2 ± 39 = 0Jadi, persamaan garis singgungnya12x + 5y – 2 + 39 = 0 ==> 12x + 5y + 37 = 0, dan12x + 5y – 2 - 39 = 0 ==> 12x + 5y – 41 = 0Jawaban A 13. Persamaan lingkaran yang mempunyai diameter AB dengan A -2, 2 dan B 2, -2 adalah ...PembahasanJari-jari = ½ diameter r = ½ √32 r = √2 r = 2√2pusat lingkaran persamaan lingkarannyajawaban C 14. Garis x + y = 2 menyinggung lingkaran untuk q = ...a. -8b. 4c. 6d. 8e. 16PembahasanPusat lingkaran = - ½ .-6, - ½ -2 = 3, 1Jarak titik pusat 3,1 lingkaran dengan dengan garis x + y = 2 atau x + y – 2 = 0adalah r, maka 2 = 10 – q q = 8jawaban D 15. Jika lingkaran yang berpusat di titik 2, 3 menyinggung garis y = 1 – x maka nilai c sama dengan ...a. 0b. 4c. 5d. 9e. 13PembahasanGaris garis y = 1 – x menyinggung lingkaran, makaSyarat menyinggung adalah D = 0, maka0 – 4. 2. -5 + c = 040 – 8c = 08c = 40c = 5Jawaban C 16. Persamaan garis singgung melalui titik 0, 5 pada lingkaran adalah ...a. 2x + y = 10 dan -2x + y = 10b. x + 2y = 10 dan x - 2y = -10c. x + 2y = 10 dan x - 2y = 10d. x + y = -10 dan 2x - y = 10e. x + 2y = -10 dan x - 2y = -10PembahasanKita subtitusikan titik 0, 5 dalam karena nilainya lebih besar, maka titik 0, 5 berada di luar garis yang melalui titik 0, 5 adalahy – y1 = m x – x1y – 5 = m x – 0y = mx + 5kita subtitusikan y = mx + 5 pada persamaan Karena y = mx + 5 menyinggung lingkaran, maka D = 0 m = ± ½ jika m = ½ maka y = mx + 5 = ½ x + 5 2y = x + 10 atau x – 2y = 10 jika m = - ½ maka y = mx + 5 = - ½ x + 5 2y = -x + 10 atau x + 2y = 10Jawaban B 17. Supaya garis y = x + a menyinggung lingkaran haruslah ...a. a = -6 atau a = 1b. a = -5 atau a = 2c. a = -1 atau a = 1d. a = -6 atau a = 2e. a = 6 atau a = -2PembahasanGaris y = x + a menyinggung lingkaran, makaSyarat menyinggung, D = 0 -a – 6 a – 2 = 0 a = -6 atau a = 2jawaban D 18. Salah satu persamaan garis singgung yang ditarik dari titik A 0, 10 ke lingkaran yang persamaannya adalah ...a. y = 10x + 3b. y = 10x - 3c. y = 3x - 10d. y = -3x - 10e. y = -3x +10pembahasan memiliki titik pusat 0, 0 dan jari-jari √10 Persamaan garis singgung bergradien m adalahGaris singgungnya melalui titik 0, 10, maka m = ± 3Persamaan garis singgungnya menjadi jika m = 3 y – y1 = m x – x1 y – 10 = 3 x – 0 y = 3x + 10 jika m = -3 y – y1 = m x – x1 y – 10 = -3 x – 0 y = -3x + 10Jawaban E 19. titik pusat lingkaran L yang berada di kuadran I dan berada di sepanjang garis y = 2x. Jika L menyinggung sumbu y di titik 0, 6 maka persamaan L adalah .. PembahasanKetika y = 6, maka y = 2x, maka x = 3Sehingg pusat lingkarannya adalah 3, 6 dengan jari-jari = r = x = 3Maka, persamaan lingkarannya menjadiJawaban E 20. Lingkaran yang sepusat dengan lingkaran dan menyinggung garis 3x – 4y + 7 = 0 mempunyai persamaan ...PembahasanPusat lingkaran = - ½ .-4, - ½ .6 = 2, -3Lingkaran menyinggung garis 3x – 4y + 7 = 0 maka jari-jarinya adalah r = 5persamaan lingkarannya adalahJawaban A 21. Jika A 1, 3, B 7, -5 maka persamaan lingkaran yang mempunyai diameter AB adalah ...PembahasanTitik pusat Panjang jari-jari sama dengan jarak A ke B atau B ke titik pusat Jadi, persamaan lingkaran dengan pusat 4, -1 dan jari-jari 5 adalahJawaban A 22. Diketahui suatu lingkaran dengan pusat berada pada kurva y = √x dan melalui titik asal O 0, 0. Jika absis titik pusat lingkaran terseut adalah a, maka persamaan garis singgung lingkaran yang melalui O adalah ...a. y = -xb. y = -x√ac. y = -axd. y = -2x√2e. y = -2axPembahasanx = a, maka y = √x = √a sehingga titik pusatnya adalah a, √apersamaan lingkarannyaLingkaran melalui titik O 0, 0, makasehingga diperoleh persamaan garis singgung lingkaran dan melalui O 0, 0 adalahJawaban B 23. lingkaran yang pusatnya berimpitan dengan pusat dan berjari-jari 5, memotong sumbu x dan sumbu y positif di titik a, 0 dan 0, b. Nilai ab = ...a. 10√6 – 15b. 10√5 - 15c. 8√6 - 10d. 8√5 - 10e. 15/2 √6-10PembahasanPusat lingkaran = - ½ . -2, - ½ . 6 = 1, -3Persamaan lingkaran dengan pusat 1, -3 dan jari-jari 5 adalahLingkaran memotong sumbu x positif, maka y = 0 x – 1 = √16 x – 1 = 4 x = 5 a = 5lingkaran memotong sumbu y positif, maka x = 0 y + 3 = √24 y = √24 – 3 b = √24 – 3jadi, nilai ab = 5 √24 – 3 = 5 √ – 3 = 10√6 - 15Jawaban A 24. Jari-jari lingkaran pada gambar di bawah ini adalah ...a. √3b. 3c. √13d. 3√3e. √37PembahasanBentuk umum persamaan lingkaran adalah Lingkaran melalui A 5, 0, maka 25 + 5A + C = 0 atau, 5A + C = -25 ... i Lingkaran melalui B 0, 5, maka 25 + 5B + C = 0 5B + C = -25 ... ii Lingkaran melalui C -1, 0, maka 1 – A + C = 0 -A + C = -1 ... iiiEliminasi i dan iii A = -4Subtitusikan A = -4, pada persamaan –A + C = -1-4 + C = -1C = -5Subtitusikan C = -5 pada persamaan 5B + C = -255B + -5 = -255B = -20B = -4Sehingga persamaan lingkarannya menjadiJari-jarinya r = √13Jawaban C 25. Salah satu garis singgung yang bersudut 120 derajat terhadap sumbu x positif pada lingkaran dengan ujung diameter di titik 7, 6 dan 1, -2 adalah ...a. y = -x√3 + 4√3 + 12b. y = -x√3 - 4√3 + 8c. y = -x√3 + 4√3 + 8d. y = -x√3 - 4√3 - 8e y = -x√3 + 4√3 + 22PembahasanJari-jari Titik pusat Persamaan lingkarannyaPersamaan garis singgung lingkaran ...iPerhatikan gambar garis singgung yang dimaksudBerdasarkan gambar di atas, gradien garis yang dimaksud adalah y/x = - √3 /1 = - √3Maka persamaan garis singgungnya i menjadi y = - x√3 + 4 √3 ± 5√4 + 2 y = - x√3 + 4 √3 ± 10 + 2 y = - x√3 + 4 √3 ± 10 + 2 y = - x√3 + 4 √3 + 10 + 2 = - x√3 + 4 √3 + 12 y = - x√3 + 4 √3 - 10 + 2 = - x√3 + 4 √3 - 8Jawaban A Gimana nih adik-adik? setelah belajar bersama kakak, makin paham atau makin bingung nih? hehehe... semoga bermanfaat ya, jangan putus-putus latihannya... MatematikaGEOMETRI ANALITIK Kelas 11 SMAPersamaan Lingkaran dan Irisan Dua LingkaranPersamaan LingkaranTentukan persamaan lingkaran jika salah satu ujung-ujung diameternya adalah sebagai berikut -3, -5 dan 1, 3 Persamaan LingkaranPersamaan Lingkaran dan Irisan Dua LingkaranGEOMETRI ANALITIKMatematikaRekomendasi video solusi lainnya0319Lingkaran berpusat di titik potong garis 5x+2y=9 dan 7x-3...Lingkaran berpusat di titik potong garis 5x+2y=9 dan 7x-3...0220Persamaan lingkaran dengan pusat 1, 5 dan menyinggung g...Persamaan lingkaran dengan pusat 1, 5 dan menyinggung g...0054Lingkaran x^2+y^2-2x+4y+1=0 memiliki titik pusat p,q. N...Lingkaran x^2+y^2-2x+4y+1=0 memiliki titik pusat p,q. N... I. Cari titik pusat lingkaranx² + y² - 4x - 8y + 2 = 0Pusat -½A , -½B-½-4 , -½-82 , 4ii. Cari persamaan garis yang melalui titik 2 , 4 dan 5 , 7 dgn rumusy - y1/y2 - y1 = x - x1/x2 - x1y - 4/7 - 4 = x - 2/5 - 2y - 4/3 = x - 2/3y - 4 = x - 2y = x + 2iii. Masukan persamaan garis tsb ke persamaan lngkaran untuk mencari tau titik-titik yg dilaluinyax² + x + 2² - 4x - 8x + 2 + 2 = 0x² + x² + 4x + 4 - 4x - 8x - 16 + 2 = 02x² - 8x - 10 = 0x² - 4x - 5 = 0x - 5x + 1 = 0x = 5 atau x = -1iv. Gunakan titik yg x = -1 untuk mencari tau titik diameter yg satunya dengan cara memasukan x = -1 ke persamaan garis y = x + 2y = -1 + 2y = 1jadi, titik diameter lingkaran adalah 5 , 7 dan -1 , 1semoga membantu

jika salah satu ujung diameter lingkaran